Kun No.							
STATIST	TICS In	termediate Part-II , Cla		Paper: II			
Time: 20 Note:	Minutes You have four choices for correct, fill that circle in fr	each objective type question	n as A, B, C and D. The chor. Use marker or pen to fill the estion.	oice which you think is			
1. 1-	Which of the following α (A) $\theta \ge \theta_0$			(D) $\theta \neq \theta_0$			
2-	The sale of ice cream in (A) secular trend	summer is an example of (B) cyclical variations	(C) seasonal variations	(D) irregular variations			
3-	A sequence which follow (A) signal	vs regular variations is ca (B) noise	ılled (C) model	(D) trend			
4-	The limits of the normal $(A) - \infty$ to $+ \infty$	distribution are (B) 0 to ∞	$(C) - \infty$ to 0	(D) 0 to 1			
5-	If $E(\hat{\theta}) = \theta$, then $\hat{\theta}$ is call (A) biased estimator	lled (B) positively biased	(C) unbiased estimator	(D) negatively biased			
6-	Cursor on the screen car (A) Keyboard	be moved by (B) Mouse	(C) Scanner	(D) CD Rom			
7-	The co-efficient of associ (A) 0 and +1	ciation Q -lies between (B) -1 and $+1$	$(C) - \infty$ and $+1$	(D) $-\infty$ to $+\infty$			
8-	In the regression equation (A) dependent variable (C) qualitative variable	on: $y = a + bx$, y is called	(B) independent variable (D) continuous variable	;			
9-	In simple regression, Σ((A) negative	(B) zero	(C) positive	(D) fractional			
10-	In a normal distribution (A) 5	$\mu = 10 \text{ and } \sigma^2 = 25, \text{ the } \tau$ (B) 25	mode is (C) 100	(D) 10			
11-	If $\sigma^2 = 5$ and $n = 2$, then $\sigma_{\overline{x}}^2$ is (in case sampling is done with replacement)						
	(A) 2	(B) 2.5	(C) 3	(D) 5			
12-	A value calculated from (A) Statistic	sample data is called (B) Parameter	(C) Mean	(D) Proportion			
13-	Two types of estimation (A) one and two sided	are (B) point and interval	(C) biased and unbiased	(D) type-I and type-II			
14-	If $r_{xy} = -0.84$, then r_{yx} i (A) 0.42	s (B) 0.84	(C) - 0.84	(D) zero			
15-	In a standard normal dis (A) 0.7979	estribution, Q ₁ is equal to (B) 0.6745	(C) – 0.6745	(D) – 0.7979			
16-	The value of χ^2 cannot by (A) zero	oe (B) positive	(C) + ∞	(D) negative			
17-	The sum of frequencies (A) zero	in sampling distribution (B) 1	is equal to (C) population size	(D) No. of possible samples			
		1/A		323-(IV)-1stA 424-7600			

Intermediate Part-II, Class 12th (1stA 424) Paper II STATISTICS Marks: 68 GUJ-24 Time: 2:40 Hours SUBJECTIVE Note: Section I is compulsory. Attempt any Three (3) questions from Section II. SECTION I $(2 \times 8 = 16)$ Write short answers to any EIGHT (8) questions: Define Standard Normal random variable. Write down two properties of Normal Distribution. iii- Describe the normal probability density function. iv- If X is N(20, 5). Find the value of the maximum ordinate. The Variance of Normal Distribution is 4. Find μ_4 . Explain the term Estimation. vii- What is meant by Critical Region? Elaborate one tail test. Compute test–statistic 'z' if \overline{X} = 116 , μ = 120 , σ = 15 and n = 100 Given $s_1^2 = 1.43$, $s_2^2 = 5.21$, $n_1 = 10$, $n_2 = 10.$ Compute $s_p.$ xi- Explain the term Program. Differentiate between low-level and high-level languages. $(2 \times 8 = 16)$ Write short answers to any EIGHT (8) questions: Given n = 25 , μ = 68.5 , σ = 2.7 and N = 1000, find $\sigma_{\overline{x}}$ and $\mu_{\overline{x}}$ using W.O.R sampling If n = 400, $\pi = 0.7$ and N = 4500, find μ_p and σ_p^2 using W.O.R sampling. What is Sampling? Define bias. What is Sampling Frame? vi- Differentiate between stratum and stratification. What is regression analysis? If n = 10, $\Sigma x = 20$, $\Sigma y = 260$, $\Sigma xy = 3490$ and $\Sigma x^2 = 3144$, find b_{yx} . Write two assumptions of regression. Define positive correlation. Given, $S_x^2 = 9.1$, $S_y^2 = 9.1$ and $S_{xy} = 1.69$, find correlation co-efficient. What is the relation between regression co-efficient and correlation co-efficient? $(2 \times 6 = 12)$ Write short answers to any SIX (6) questions: i- Define 2 x 2 contingency table. Define Rank correlation. What is "degree of freedom"? iv- Explain negative association between the attributes. Define Analysis of Time Series. vi- Define Seasonal Variations. vii- Given $\Sigma d^2 = 440$, n = 11. Find the value of Rank Correlation. viii- Define co-efficient of association.

(Turn over)

What does it mean if; Q = 0, Q = +1, Q = -1

SECTION II

- 5- (a) If 'x' is normally distributed with mean = 25 and variance = 16 then find the probabilities i. $P[x \ge 30]$ ii. $P[x \le 16]$
 - (b) A coin is tossed 400 times. Use the normal approximation to find the probability of obtaining 4
 i. Between 185 and 210 heads ii. Exactly 205 heads
- 6- (a) Take all possible samples of size 2 without replacement from the population 2, 6, 8, 12, 14. 4 Form the sampling distribution of mean and verify that $\mu_{\overline{x}} = \mu$

Find μ_{x} and σ_{x} for a random sample of size 36.

- 7- (a) Find 95% confidence interval for μ if a sample of 25 values gave a mean $\overline{X} = 83$. Given that population Standard Deviation is 7.
 - (b) A sample of 12 values from a population gives mean $\overline{X} = 40$ and unbiased estimate of Variance $S^2 = 2.56$. Test the hypothesis at 5% level of significance that mean in the population is 44
- 8- (a) Given the following data: $\sum x = 5000$ $\sum x = 5000$ $\sum x = 30000$ $\sum x^2 = 360900$

Calculate Regression equation taking 'x' as independent variable.

(b) For a set of data we have

$$S_x = 3$$
 $\Sigma (y - \overline{y})^2 = 640$ $\Gamma = 0.5$

Find the number of pair of values.

9- (a) In an investigation about Eye Colour and left or right handedness of a person, the following results were obtained:

E C.I	Handedness			
Eye Colour —	Left	Right		
Blue	15	85		
Brown	20	80		

Test the hypothesis that if there is any association between Eye Colour and Handedness at 5% level of significance.

(b) Calculate 7 days moving averages for the following record of attendance:

Week	Days							
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
I	24	55	29	48	52	55	61	
11	27	52	32	43	53	56	65	