| Kun No. | | | | | | | | |-------------------|---|---|---|-----------------------------|--|--|--| | STATIST | TICS In | termediate Part-II , Cla | | Paper: II | | | | | Time: 20
Note: | Minutes You have four choices for correct, fill that circle in fr | each objective type question | n as A, B, C and D. The chor. Use marker or pen to fill the estion. | oice which you think is | | | | | 1. 1- | Which of the following α (A) $\theta \ge \theta_0$ | | | (D) $\theta \neq \theta_0$ | | | | | 2- | The sale of ice cream in (A) secular trend | summer is an example of (B) cyclical variations | (C) seasonal variations | (D) irregular variations | | | | | 3- | A sequence which follow (A) signal | vs regular variations is ca (B) noise | ılled
(C) model | (D) trend | | | | | 4- | The limits of the normal $(A) - \infty$ to $+ \infty$ | distribution are (B) 0 to ∞ | $(C) - \infty$ to 0 | (D) 0 to 1 | | | | | 5- | If $E(\hat{\theta}) = \theta$, then $\hat{\theta}$ is call (A) biased estimator | lled
(B) positively biased | (C) unbiased estimator | (D) negatively biased | | | | | 6- | Cursor on the screen car (A) Keyboard | be moved by (B) Mouse | (C) Scanner | (D) CD Rom | | | | | 7- | The co-efficient of associ
(A) 0 and +1 | ciation Q -lies between (B) -1 and $+1$ | $(C) - \infty$ and $+1$ | (D) $-\infty$ to $+\infty$ | | | | | 8- | In the regression equation (A) dependent variable (C) qualitative variable | on: $y = a + bx$, y is called | (B) independent variable (D) continuous variable | ; | | | | | 9- | In simple regression, Σ((A) negative | (B) zero | (C) positive | (D) fractional | | | | | 10- | In a normal distribution (A) 5 | $\mu = 10 \text{ and } \sigma^2 = 25, \text{ the } \tau$ (B) 25 | mode is
(C) 100 | (D) 10 | | | | | 11- | If $\sigma^2 = 5$ and $n = 2$, then $\sigma_{\overline{x}}^2$ is (in case sampling is done with replacement) | | | | | | | | | (A) 2 | (B) 2.5 | (C) 3 | (D) 5 | | | | | 12- | A value calculated from (A) Statistic | sample data is called (B) Parameter | (C) Mean | (D) Proportion | | | | | 13- | Two types of estimation (A) one and two sided | are (B) point and interval | (C) biased and unbiased | (D) type-I and type-II | | | | | 14- | If $r_{xy} = -0.84$, then r_{yx} i
(A) 0.42 | s
(B) 0.84 | (C) - 0.84 | (D) zero | | | | | 15- | In a standard normal dis
(A) 0.7979 | estribution, Q ₁ is equal to (B) 0.6745 | (C) – 0.6745 | (D) – 0.7979 | | | | | 16- | The value of χ^2 cannot by (A) zero | oe (B) positive | (C) + ∞ | (D) negative | | | | | 17- | The sum of frequencies (A) zero | in sampling distribution (B) 1 | is equal to (C) population size | (D) No. of possible samples | | | | | | | 1/A | | 323-(IV)-1stA 424-7600 | | | | Intermediate Part-II, Class 12th (1stA 424) Paper II STATISTICS Marks: 68 GUJ-24 Time: 2:40 Hours SUBJECTIVE Note: Section I is compulsory. Attempt any Three (3) questions from Section II. SECTION I $(2 \times 8 = 16)$ Write short answers to any EIGHT (8) questions: Define Standard Normal random variable. Write down two properties of Normal Distribution. iii- Describe the normal probability density function. iv- If X is N(20, 5). Find the value of the maximum ordinate. The Variance of Normal Distribution is 4. Find μ_4 . Explain the term Estimation. vii- What is meant by Critical Region? Elaborate one tail test. Compute test–statistic 'z' if \overline{X} = 116 , μ = 120 , σ = 15 and n = 100 Given $s_1^2 = 1.43$, $s_2^2 = 5.21$, $n_1 = 10$, $n_2 = 10.$ Compute $s_p.$ xi- Explain the term Program. Differentiate between low-level and high-level languages. $(2 \times 8 = 16)$ Write short answers to any EIGHT (8) questions: Given n = 25 , μ = 68.5 , σ = 2.7 and N = 1000, find $\sigma_{\overline{x}}$ and $\mu_{\overline{x}}$ using W.O.R sampling If n = 400, $\pi = 0.7$ and N = 4500, find μ_p and σ_p^2 using W.O.R sampling. What is Sampling? Define bias. What is Sampling Frame? vi- Differentiate between stratum and stratification. What is regression analysis? If n = 10, $\Sigma x = 20$, $\Sigma y = 260$, $\Sigma xy = 3490$ and $\Sigma x^2 = 3144$, find b_{yx} . Write two assumptions of regression. Define positive correlation. Given, $S_x^2 = 9.1$, $S_y^2 = 9.1$ and $S_{xy} = 1.69$, find correlation co-efficient. What is the relation between regression co-efficient and correlation co-efficient? $(2 \times 6 = 12)$ Write short answers to any SIX (6) questions: i- Define 2 x 2 contingency table. Define Rank correlation. What is "degree of freedom"? iv- Explain negative association between the attributes. Define Analysis of Time Series. vi- Define Seasonal Variations. vii- Given $\Sigma d^2 = 440$, n = 11. Find the value of Rank Correlation. viii- Define co-efficient of association. (Turn over) What does it mean if; Q = 0, Q = +1, Q = -1 ## **SECTION II** - 5- (a) If 'x' is normally distributed with mean = 25 and variance = 16 then find the probabilities i. $P[x \ge 30]$ ii. $P[x \le 16]$ - (b) A coin is tossed 400 times. Use the normal approximation to find the probability of obtaining 4 i. Between 185 and 210 heads ii. Exactly 205 heads - 6- (a) Take all possible samples of size 2 without replacement from the population 2, 6, 8, 12, 14. 4 Form the sampling distribution of mean and verify that $\mu_{\overline{x}} = \mu$ Find μ_{x} and σ_{x} for a random sample of size 36. - 7- (a) Find 95% confidence interval for μ if a sample of 25 values gave a mean $\overline{X} = 83$. Given that population Standard Deviation is 7. - (b) A sample of 12 values from a population gives mean $\overline{X} = 40$ and unbiased estimate of Variance $S^2 = 2.56$. Test the hypothesis at 5% level of significance that mean in the population is 44 - 8- (a) Given the following data: $\sum x = 5000$ $\sum x = 5000$ $\sum x = 30000$ $\sum x^2 = 360900$ Calculate Regression equation taking 'x' as independent variable. (b) For a set of data we have $$S_x = 3$$ $\Sigma (y - \overline{y})^2 = 640$ $\Gamma = 0.5$ Find the number of pair of values. 9- (a) In an investigation about Eye Colour and left or right handedness of a person, the following results were obtained: | E C.I | Handedness | | | | |--------------|------------|-------|--|--| | Eye Colour — | Left | Right | | | | Blue | 15 | 85 | | | | Brown | 20 | 80 | | | Test the hypothesis that if there is any association between Eye Colour and Handedness at 5% level of significance. (b) Calculate 7 days moving averages for the following record of attendance: | Week | Days | | | | | | | | |------|--------|--------|---------|-----------|----------|--------|----------|--| | | Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | | | I | 24 | 55 | 29 | 48 | 52 | 55 | 61 | | | 11 | 27 | 52 | 32 | 43 | 53 | 56 | 65 | |